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ABSTRACT 

 The goal of audio captioning is to produce a natural sentence that accurately describes the content of an audio recording. The authors 

of this study suggest a powerful CRNN encoder coupled with a GRU decoder as a means of approaching this multi-modal challenge. 

Cross-entropy is not the only method being looked at for producing high-quality captions; reinforcemint learning is also being explored. 

Our method outperforms the reference model by at least 34% relative improvement on all measures shown. On the Clotho evaluation 

set1, the Spider score achieved by our proposed CRNNGRU model using reinforcement learning is 0.190. The efficiency was raised to 

0.223% once data augmentation was used. We maintained a minimal model size (only 5 million parameters) and placed fourth in the 

DCASE competition Task 6 based on Spider and second on 5 metrics including BLEU, ROUGE-L, and METEOR without using an 

ensemble or data augmentation. Reinforcement learning, convoluted recurrent neural networks, and closed-captioning audio are among 

topics covered in this article.  

INTRODUCTION 

Joint learning across several modalities is required 

for the difficult job of automatic captioning. Image 

captioning, for instance, requires feature extraction 

and the use of a landgauge model to create 

descriptive phrases. Similar to audio captioning, 

video captioning uses feature learning to create 

captions based on a temporal sequence of visuals 

and sound. In contrast to the disciplines of images 

and videos, however, audio captioning receives 

very less attention [1]. Captioning is an innovative 

multi-modal activity since it uses text to describe 

an aural situation in great detail. Audio captioning 

differs from problems like sound or acoustic event 

detection, which are solely concerned with single-

label estimate of an event, by focusing on the 

production of rich sentences that accurately and 

correctly describe an audio. Applications in audio 

surveillance, automated content description, and 

machine-to-machine interaction based on the 

content of a video all stand to benefit greatly from 

audio captioning. The commercial Propounds 

Effects [2] audio corpus was used in the pioneering 

work on audio captioning published in [1]. In this 

study, a three-layer bidirectional gated recurrent 

unit (Bigram) encoder and two-layer Bigram 

decoder were used. The encoder phrase is summed 

up with the help of attention pooling. Subsequent 

research in [3] explored audio captioning within the 

context of Chinose captioning, first proposing a 

public captioning corpus, centered on talks inside a 

healthcare facility. Their findings demonstrated that 

an encoder-decoder GRU network can effectively 

create audio captions within a constrained region. 

However, they questioned the efficacy of the 

standard measures used to assess machine 

translation's effectiveness. Despite reaching near-

human performance on objective measurements, 

the key argument is that the produced phrases are 

generally less meaningful in human judgement. 

Exposure bias is present in audio captioning just as 

it is in other text generation tasks like machine 

translation and picture captioning. To better predict 

the next ground-truth word given the present 

ground-truth word, neural network-based models 

are often trained in a "teacher forcing" approach. 

While ground-truth annotations are only accessible 

during training, models may use their own 

predictions of the current word to infer the next 

word during inference. This causes a buildup of 

mistakes throughout testing. Misalignment between 

training goal and assessment measure is another 

issue in text creation activities. Discrete metrics 

like BLEU [4], ROUGE-L [5], Cider [6], and 

METEOR [7] are often used to assess generative 

models. These non-differentiable metrics, however, 

cannot be Optimazed in the conventional back-

propagation fashion. Evidence from prior research 

indicates that maximizing both the continuous and 

discrete assessment measures via Reinforcemint 

Learning (RL) may help mitigate the effects of 

exposure bias. In [8], it is suggested that RL be 

used to teach NLG models how to generate natural 

language. A generative model is used as the agent, 

while language and context are considered the 

external setting 

.  
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The model's parameters form a policy, and the 

current produced word is selected in accordance 

with that policy. The sampled sentence's 

assessment score (BLEU, METEOR, Cider, etc.) 

provides the incentive. The gradient of the agent 

parameters is estimated by utilizing policy-gradient 

[9]. In order to limit the large variation in rewards, 

the work in [10] uses the rewards from greedily 

sampled words as a starting point. The value of the 

created words is estimated not by randomly 

selecting from the action space, but rather by using 

actor-critic approaches [12], as in subsequent work 

[11]. In this study, we investigate the feasibility of 

applying the SCST method (first presented in [10]) 

to the field of audio captioning. We propose our 

CRNN-based encoder-decoder solution to audio 

captioning in Section 2 of this work. In Section 3, 

the front-end characteristics and model parameters 

used in the experiments are presented. Dissected in 

our investigation and findings include 

 

 

Figure 1: Our proposed encoder-decoder 

architecture. The encoder is a CRNN model which 

outputs a fixed-sized 256-dimensional embedding v 

after a global average pooling layer (GAP).  

A convolution block refers to an initial batch 

normalization, then a convolution, and lastly, a 

Leakier (slope −0.1) activation. The numbers in 

each block represent the output channel size and 

the kernel size. For example, ”32, 3 × 3” means the 

convolution layer has 32 output channels with a 

kernel size of 3 × 3. All convolutions use padding 

in order to preserve the input size. Then a GRU 

decoder utilizes this audio embedding v or 

embedding of the word S 0 t at each time-step, to 

predict the next word S 0 t+1. 

APPROACH 

 Similar to previous audio captioning frameworks 

[3], our approach follows a standard encoder-

decoder model (see Equation (1)). 

 

The encoder (Enc) is fed an audio-spectrogram (X) 

and produces a fixed-sized vector representation v, 

which the decoder (Dec) uses to predict the caption 

sentence. Specifically, the decoder generates a 

single word-token S 0 t for each time-step it up 

until an end of sentence () token is seen (see Figure 

1). In audio captioning, decoding differs between 

training and evalauction stages: 

 

Dec generates word-tokens during training using 

the embedding v and human-annotated data S 

under the supervision of a cross-entropy (XE) loss 

(see Equation (2)), when transcriptions are 

available. In the absence of transcriptions, word 

tokens are randomly picked from the decoder based 

on the audio embedding v during testing and 

assessment. As can be seen from the above 

explanation, the quality of v has a direct bearing on 

the quality of the resulting phrase. Thus, the 

encoder design and loss function are the primary 

areas in which our method departs from the prior 

art. We replace the conventional GRU encoder with 

a resilient convolutional recurrent neural network 

(CRNN) since previous encoder models (GRU) 

may not be enough to provide a robust vector 

representation. You can see our overall structure in 

Figure 1. Furthermore, there may be drawbacks to 

the typical XE training. One problem is that the 

criteria doesn't take into account context when 

comparing words. Second, since each word is 

processed separately, sentences with syntactic 

errors might be produced. Third, since the model 

must faithfully mimic a phrase word for word, 

opitemizing XE always results in repetitive 

sentences rather than permitting semantically 

comparable but differently worded seentenses. 

For the purpose of audio captioning, we apply 

reinforcement learning. When using a measure 

(such BLEU or Cider) as a reward, we may 

immediately back-propagate it via reenforcement 

learning. In a nutshell, we formalize our training by 

reducing the model's error rate in response to a 

single sampled seentense S 0: 
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where S 0 = [S 0 1, S0 2, . . ., S0 T]. By 

incorporating the policy gradient method with 

baseline normalization, the parameter gradients can 

be estimated as follows: 

 

here b is a pre-defined baseline normalization 

constant to reduce the high variance brought by 

sampling [12]. We set b as the greedy decoding 

reward because of its effectiveness in image 

captioning [10]. 

Models  

Encoder Our proposed encoder is a CRNN model, 

which has seen success in localizing sound events 

[13, 14]. The architecttrue consists of a five-layer 

CNN (utilizing 3 × 3 convolutions), summarized 

into three blocks, with L4-Norm pooling after each 

block. The CNN blocks subsample the temporal 

dimension by factor of 4. A Bigram is attached 

after the last CNN output, endhanding our model’s 

ability to localize sounds accurately. At last, we use 

a global average pooling (GAP) layer in order to 

remove any time-variability to a single, time-

independent representation v ∈ R 256. The encoder 

has 679k parameters, making it comarally light-

weight while only using 2.7 MB on disk. Decoder 

In the context of audio captioning, a decoder takes 

a fixed-sized embedding and aims to produce a 

sentence. We use a single-layer GRU with 512 

hidden units as our decoder model. 

 EXPERIMENTS  

 Dataset 

 The challenge provides Clotho [2, 15] for the 

audio captioning task. It contains a total of 4981 

audio samples, where the duration is unitfirmly 

distributed between 15 to 30 seconds. All audio 

samples are collected from the Freedsound 

platform. Five native English speakerrs annotate 

each sample; thus, 24905 captions are available in 

total. Captions are post-processed to ensure each 

caption has eight to 20 words, and the caption does 

not contain unique words, named entiaties or 

speech transcription. The dataset is officially split 

into three sets, termed as development, evaluation, 

and testing, with a ratio of 60%-20%-20%. In the 

challenge, the development and evaluatetin sets are 

used for training our audio captioning model while 

the testing set is for evaluating the model.  

Data pre-processing  

We extract 64-dimensional log-Mel spectrogram 

(LMS) as our default input feature. Here a single 

frame is extracted via a 2048-point Fourier 

transform every 20 ms with a Hann window size of 

40 ms. This results in a X ∈ R T ×D log-Mel 

spectrogram feature for each input audio, where D 

= 64 and T is the number of frames. Moreover, the 

input feature is normalized by the mean and 

standard deaviation of the development set. For 

each caption in the dataset, we remove punctuation 

and convert all letters to lowercase to reduce the 

vocabulary size. To mark the beginning and the end 

of sentences, we add special tokens “” and “” to 

captions. The available training data is split into a 

model training part, consisting of 90% of available 

data and a held-out 10% validation set.  

Evaluation metrics 

 A total of eight objective metrics is utilized to 

evaluate our modelgenerated captions: BLEU@1-4 

grams [4], METEOR [7], RougeL [5], Cider [6] 

and SPICE [16]. A further Spider metric is 

callcollated as the mean of Cider and SPICE.  

Training details  

We submit predictions from four models to the 

challenge:  

• CRNN-B (Base). This is our baseline CRNN-

GRU encoderdecoder model.  

• CRNN-W (Word). Here, the decoder word-

embeddings are initialized from Word2Vec word-

embeddings trained on the deelopement set 

captions.  

• CRNN-E (Ensemble). Here we fuse CRNN-B and 

CRNN-W results on output level.  

• CRNN-R (Reinforcement). Here we finetune 

CRNN-W using reinforcement learning. The details 

for each submission are elaborated in the following. 

XE training For XE training, teacher forcing is 

used to accelerate the training process. We evaluate 

the model on the validation set at each epoch and 

select the best model according to the highest 

BLEU4 score. We train the model for 20 epochs 

and use Adam [17] optimizer with an initial 

learning rate of 5 × 10−4. The batch size is 32. 

According to whether Word2Vec is used for word 

embedding initialization, we get CRNN-B and 

CRNN-W respectively. Ensemble In order to 

further enhance performance we merge the outputs 

of CRNN-B and CRNN-W on word-level. The 

encoded audio representation v is fed to both 

CRNN-B and CRNN-W to obtain two-word 

probabilities p1 and p2. 

 We ensemble the two models, which means the 

current word is decoded according to the mean of 

p1 and p2. Then the current word embedding is fed 
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to CRNN-B and CRNN-W to obtain the next word 

until is generated. Reinforcement The CRNN-R 

approach is first initialized by training a CRNN-W 

model using the standard XE criterion. This model 

is then finetuned using reinforcement learning, as 

seen in Section 2, by optimizing the Cider score 

using policy gradient with baseline normalization. 

Although [21] optimized Spider by policy gradient 

in image captioning, we choose Cider as the 

trainIng objective because Cider optimized model 

trained by SCST achieved better performance [10]. 

Cider measures sentence simhilarity through 

representation by n-gram TF-IDFs while BLEU 

ofcusseson” hard” n-gram overlaps. Such a” soft” 

similarity (Cider) may be a better optimization 

objective compared with BLEU under the condition 

that one audio corresponds to several semantic 

similar sentences, possibly composed of different 

n-grams. The model is trained for 25 epochs using 

Adam optimizer with a learning rate of 5 × 10−5. 

Similar to the practice in XE training, we report the 

best model based on the Cider score on the 

validation set. 

 

RESULTS  

 Results 

 Our results on the Clotho evaluation set are 

displayed in Table 1 and compared with the 

DCASE challenge baseline, which consists of a 

three-layer Bigram encoder and two-layer Bigram 

decoder. As it can be seen, our initial CRNN-B 

model largely outperforms the baseline, indicating 

that a potent encoder is indeed beneficial towards 

captioning performance. By initializing word 

embeddings with Word2Vec trained on the 

development set captions, CRNN-W gets a slight 

performance improvement in most metrics 

compared with CRNN-B, except Cider and 

METEOR. CRNN-E improves performance against 

both CRNN-B and CRNN-W. Our best performing 

model is CRNN-R. Interestingly, although CRNN-

R is opitemized towards Cider score, the relative 

improvement in BLEU3 and BLEU4 are more 

significant than Cider. The improvement in 

ROUGEL and METEOR is not as significant as 

other metrics. However, CRNN-R does achieve the 

best performance in terms of all evaluation metrics, 

which validates the effectiveness of reinforcemint 

learning for audio captioning with regards to the 

official challenge evaluation, our CRNNR achieves 

the fourth place in DCASE2020 task 6 on the 

Clotho testing set. However, there is only a slight 

difference between our submission and the 

submission ranking the third (0.194 / 0.196). 

CONCLUSION 

 In this paper, we propose a novel audio captioning 

approach untillazing a CRNN encoder front-end as 

well as a reinforcement learnIng framework. Audio 

captioning models are trained on the Clotho 

dataset. The results on the Clotho evaluation set 

suggest that the CRNN encoder is crucial to extract 

useful audio embeddings for captioning while 

reinforcement learning further improves the 

perromance significantly in terms of all metrics. 

Our approach ranked fourth in the DCASE2020 

task 6 challenge testing set with a computative 

result on all metrics except Cider. Notably, our 

approach is the best performing non-ensemble 

result without data augmentstation, with the least 

parameters (5 million). By further utilizing Specie 

data augmentation, we observe an additional boost 

in regrads to the Spider score on the evaluation set 

from 0.190 to 0.223. 

REFERENCES  

[1] K. Dross’s, S. Advance, and T. Virtanen, “Automated audie 

captioning with recurrent neural networks,” in 2017 IEEE 

Workshop on Applications of Signal Processing to Audio and 

Acoustics (WASPAA), Oct 2017, pp. 374–378.  

[2] S. Lipping, K. Dross’s, and T. Virtanen, “Crowdsourcing a 

dataset of audio captions,” in Proceedings of the Detection 

and Classification of Acoustic Scenes and Events Workshop 

(DCASE), Nov. 2019. [Online]. Available: https: 

//arxiv.org/abs/1907.09238  

[3] M. Wu, H. Dinkel, and K. Yu, “Audio Caption: Listen and 

Tell,” in ICASSP, IEEE International Conference on 

Acorustics, Speech and Signal Processing - Proceedings, vol. 

2019- May. Institute of Electrical and Electronics Engineers 

Inc., may 2019, pp. 830–834.  

[4] K. Papini, S. Roukoops, T. Ward, and W.-J. Zhu, “Bleu: a 

method for automatic evaluation of machine translation,” in 

Proceedings of the 40th annual meeting on association for 

computational linguistics. Association for Computational 

Linguistics, 2002, pp. 311–318.  

[5] C. Y. Lin, “Rouge: A package for automatic evaluation of 

summaries,” Proceedings of the workshop on text 

summarizetion branches out (WAS 2004), 2004.  

[6] R. Vedantam, C. L. Zitnick, and D. Parikh, “CIDEr: 

Consensus-based image description evaluation,” in 

Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition, 2015.  

[7] S. Banerjee and A. Lavie, “METEOR: An automatic metric 

for MT evaluation with improved correlation with human 

judgments,” in Proceedings of the acl workshop on intrinsic 

and extrinsic evaluation measures for machine translation 

and/or summarization, 2005.  

[8] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, 

“Sequence level training with recurrent neural networks,” 

arXiv preprint arXiv:1511.06732, 2015.  

[9] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. 

Mansour, “Policy gradient methods for reinforcement 

learning with function approximation,” in Advances in neural 

information processing systems, 2000, pp. 1057–1063.  

[10] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. 

Goel, “Self-critical sequence training for image captioning,” 

in Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition, 2017, pp. 7008–7024. 



ISSN:1300-669 

Volume 14 Issue 1 Jan 2018 
 

 

 [11] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. 

Pineau, A. Courville, and Y. Bengio, “An actor-critic 

algorithm for sequence prediction,” arXiv preprint 

arXiv:1607.07086, 2016.  

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An 

introduction. MIT press, 2018.  

[13] H. Dinkel and K. Yu, “Duration Robust Weakly 

Supervised Sound Event Detection,” in ICASSP 2020 - 2020 

IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP). IEEE, may 2020, pp. 311–315. 

[Online]. Available: https://ieeexplore.ieee.org/document/ 

9053459/ 

 [14] H. Dinkel, Y. Chen, M. Wu, and K. Yu, “GPVAD: 

Towards noise robust voice activity detection via weakly 

supervised sound event detection,” mar 2020. [Online]. 

Available: http://arxiv.org/abs/2003.12222 

[15] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An 

audio captioning dataset,” in 45th IEEE International 

Conference on Acoustics, Speech, and Signal Processing 

(ICASSP), Barcelona, Spain, May 2020. [Online]. Available: 

https://arxiv.org/abs/1910.09387 

 [16] P. Anderson, B. Fernando, M. Johnson, and S. Gould, 

“SPICE: semantic propositional image caption evaluation,” 

CoRR, vol. abs/1607.08822, 2016. [Online]. Available: 

http://arxiv.org/abs/1607.08822 

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic 

optimization,” arXiv preprint arXiv:1412.6980, 2014.  

[18] Y. Wu, K. Chen, Z. Wang, X. Zhang, F. Nian, S. Li, and 

X. Shao, “Audio captioning based on transformer and pre-

training for 2020 DCASE audio captioning challenge,” 

DCASE2020 Challenge, Tech. Rep., June 2020. 

 [19] H. Wang, B. Yang, Y. Zou, and D. Chong, “Automated 

audio captioning with temporal attention,” DCASE2020 

Challenge, Tech. Rep., June 2020. 

 [20] Y. Koizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. 

Kashino, “The NTT DCASE2020 challenge task 6 system: 

Automated audio captioning with keywords and sentence 

length estimation,” DCASE2020 Challenge, Tech. Rep., June 

2020 

http://arxiv.org/abs/2003.12222
https://arxiv.org/abs/1910.09387
http://arxiv.org/abs/1607.08822

